
  



  

What is Clean Code?

● It is easy to understand the execution flow of the entire application

● It is easy to understand how the different objects collaborate with each other

● It is easy to understand the role and responsibility of each class

● It is easy to understand what each method does

● It is easy to understand what is the purpose of each expression and variable

● Classes and methods are small and only have single responsibility

● Classes have clear and concise public APIs

● Classes and methods are predictable and work as expected

● The code is easily testable and has unit tests (or it is easy to write the tests)

● Tests are easy to understand and easy to change

● Clean Code is SOLID

● Clean Code reads like well-written prose



  

Why Clean Code Is Important?Why Clean Code Is Important?

● Your teammates will thank you

● Messy code tends to get messier

● Faster decision making

● Faster bug fixing

● Reusability

● Clean code leads to better practices

● It feels great!



  

First Write Your Code Than Refactor It



  



  



  

DRY

Don't Repeat Yourself



  



  

Broken Window Theory



  

Boy Scout Rule



  

Separation Of Concerns

● How much code you have to change?

● How easy it is to make the changes?

● How likely you are to break existing features that are being used by other customers

● How much you can reuse your existing model/architecture?



  

“Any fool can write code that a computer can understand.

Good programmers write code that humans can understand.”

 Martin Fowler



  

Clean Code vs Performance



  

Code Smells

● Rigidity

– The design is hard to change

– Sign: Huh, it was a lot more complicated than I thought.

● Fragility

– The design is easy to break

– Sign: some modules are constantly on the bug list

● Immobility

– The design is hard to reuse

● Viscosity

– Changes are easier to implement by doing the wrong thing (Hack)

– Sign: When a change is needed, you are tempted to hack rather than to preserve 
the original design

Agile Software Development, Principles, Patterns, and Practices

Robert C.Martin



  

Reasons Writing Bad Code Happens

● Deadline

● The Broken Window Theory

● Over Architecting (YAGNI)

– You are not gonna need it

● Bad Design

● Poor Skill



  

Technical Debt

Money
 The Cost Of The Bad Code

Time, Productivity, Stress

All it is about the Money 



  

How to write Clean Code?



  

 Names

● Choose descriptive and unambiguous names.

● Make meaningful distinction.

● Use pronounceable names (modymdhms)

● Use searchable names.

● Replace magic numbers with named constants (P)

● Avoid encodings. Don't append prefixes or type information. 

● Don't use a,b,c,i

● Class should be a noun

● method should be a verb

● Boolean names should answer Yes/No

● Pick one word per concept



  

You Think You Found A Better Name: 

Rename It



  

Functions

● Small

● Smaller than that

● Do one thing

● Less 80 characters

● Less 7 line

● Don't use switch .. it violates SRP, OCP  (Use Abstract Factory) 

● Don't use else

● Arguments 

● Don't be afraid to make a name long ... it's better than use short enigmatic

● Have no side effect

● Command query separation

● DRY code (Don't Repeat Yourself)

● KISS

● Don't afraid of new line

● Don't afraid of Exception



  

Class

● Should be small

● SRP (Single Responsibility Principle)

● Cohesion

● Loose Coupling (Use Dependency Inversion)

● Less than 300 line

● Use Your Conventions



  

Comment

● Don't comment bad code – rewrite it

● TODO comment



  

Formatting

● Consistency

● Vertical Formatting

● Horizontal Formatting

● PSR-12

– https://www.php-fig.org/psr/psr-12/

● Team Rules



  

Single Responsibility

A Class, Module, Method Should Have Only One Reason To 
Change
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