
JSON Web Token
(JWT)

Prashant Walke

Overview

What is JSON Web Token?

JSON Web Tokens Uses
● Authorization

● Information Exchange

How do JSON Web Tokens work

What is JSON Web Token?

● JWT is an open standard (RFC 7519) that defines a compact and

self-contained way for securely transmitting information

between parties as a JSON object.

● This information can be verified and trusted because it is

digitally signed.

● JWTs can be signed using a secret (with the HMAC algorithm) or

a public/private key pair using RSA or ECDSA.

JSON Web Tokens Uses

Authorization

● Once the user is logged in,

each subsequent request

will include the JWT,

allowing the user to access

routes, services, and

resources that are

permitted with that token.

Information Exchange

● JSON Web Tokens are a

good way of securely

transmitting information

between parties

Why should we use JSON Web Tokens?
● Security - Securely transmitting information between parties using public/private key

pairs

● Ease - Ease of client-side processing of the JSON Web token on multiple platforms,

especially mobile.

● Compact - Because of its size, it can be sent through an URL, POST parameter, or

inside an HTTP header. Additionally, due to its size its transmission is fast.

● Self-Contained - The payload contains all the required information about the user, to

avoid querying the database more than once.

How do JSON Web Tokens
work?

JWT format

header.payload.signature

● Header - consists of two parts: the type of the token, which is

JWT, and the signing algorithm being used, such as HMAC

SHA256 or RSA.

For example: {

"alg": "HS256",

"typ": "JWT"

}

JWT format
header.payload.signature

● Payload- Contains the claims. Claims are statements about

an entity (typically, the user) and additional data. There are

three types of claims: registered, public, and private claims.

For example: {

"user_id": "4"

}

JWT format
header.payload.signature

● Signature - To create the signature part you have to take the

encoded header, the encoded payload, a secret, the algorithm

specified in the header, and sign that.

For example (HMAC SHA256 algorithm):

HMACSHA256(

base64UrlEncode(header) + "." +

base64UrlEncode(payload),

secret)

JWT format
Authentication

Server

User Sign In ([username/password])

User Authenticated, JWT Created and return to USER

1

2

{header.payload.signature
}

{JWT}

User

Application
Server

User passes [JWT] When making API Calls3

Application verifies and processes API Call 4

JWT to verify the authenticity of a user
● User first signs into the authentication server using the authentication server’s login

system (e.g. username and password, Facebook login, Google login, Twitter etc).

● The authentication server then creates the JWT and sends it to the user.

● When the user makes API calls to the application, the user passes the JWT along with

the API call.

● In this setup, the application server would be configured to verify that the incoming

JWT are created by the authentication server

● When the user makes API calls with the attached JWT, the application can use the JWT

to verify that the API call is coming from an authenticated user.

Conclusion

Definitely having reliable way to

authenticate user is the first thing

on the list and using JWT

Authentication as an best

authentication method.

